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1 Introduction

In Cho and White (2007) �Testing for Regime Switching�the authors ob-
tain the asymptotic null distribution of a quasi-likelihood ratio (QLR) statistic.
The statistic is designed to test the null hypothesis of one regime against the al-
ternative of Markov switching between two regimes. Likelihood ratio statistics
are used because the test involves nuisance parameters that are not identi�ed
under the null hypothesis, together with other nonstandard features. Cho
and White focus on a quasi-likelihood, which ignores certain serial correlation
properties but allows for a tractable factorization of the likelihood. While the
majority of their paper focuses on asymptotic behavior under the null hypothe-
sis, Theorem 1(b) states that the quasi-maximum likelihood estimator (QMLE)
is consistent under the alternative hypothesis. Consistency of the QMLE re-
quires that the expected quasi-log-likelihood attain a global maximum at the
population parameter values. This requirement holds for some Markov regime-
switching processes but, as we show below, not for an autoregressive process as
analyzed in Cho and White.
The quasi-likelihood approximates the Markov likelihood by replacing the

probabilities of the state variable that indicates regimes. Speci�cally, the prob-
abilities from the distribution of state variables conditional on past values of
the observed data (the conditional state probabilities) are replaced with the

�Corresponding author: doug@econ.ucsb.edu We thank Jin Cho and Hal White for helpful
comments.
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unconditional probabilities from the stationary distribution of state variables.1

In so doing the quasi-likelihood ignores serial correlation in the state variables.
Ignoring this serial correlation can lead to inconsistency if the conditional state
probabilities depend upon the regressors that enter the state-speci�c conditional
densities.
To understand the source of inconsistency, we use the classic structure that

Wald (1949) proposed to demonstrate consistency of the MLE. The structure
was adapted by Levine (1983) to demonstrate a general property of consistency
for a QMLE, where the quasi-log-likelihood is constructed from conditional den-
sity functions. As we show below, in applying the logic of Levine to Markov
regime-switching processes, a key requirement is that the conditional state prob-
abilities be independent of the regressors that enter the state-speci�c conditional
densities. For a process in which the conditional densities depend only on ex-
ogenous regressors, the conditional state probabilities are independent of the
regressors and a QMLE is consistent. For the autoregressive process analyzed
in Cho and White (Section 3, p. 1697), however, the conditional state probabil-
ities depend upon regressors that enter the state-speci�c conditional densities
and a QMLE is inconsistent. Lack of consistency of a QMLE extends generally
to autoregressive processes as lagged values of the dependent variable, which are
regressors in the conditional densities, contain information about lagged values
of the state variable, which in turn contain information about the current value
of the state variable.
We organize the results as follows. The key assumptions from Cho and

White together with the quasi-likelihood are contained in Section 2. In Section
3 we present the Markov-regime switching autoregressive process analyzed by
Cho and White and show that the gradient of the quasi-log-likelihood does not
equal zero when evaluated at the population parameter values. In Section 4 we
establish a condition that ensures that the expected quasi-log-likelihood attains
a global maximum (under the alternative) at the population parameter values.
To understand the distinction between our su¢ cient condition and the condition
contained in Cho and White we �rst relate the autoregressive process to each
condition and then refer to the proof of Theorem 1(b) in Cho and White to
determine the impact of each condition. We then discuss the implications of
these results for the consistency of a QLR test statistic.

2 Markov Regime-Switching Processes

Rather than presenting all the assumptions from Cho and White, we focus only
on the assumptions that pertain to establishing a global maximum of the quasi-
log-likelihood at the population parameter values. The �rst assumption de�nes
the class of Markov regime-switching process, which have strictly stationary

1Other quasi-likelihood approximations for Markov regime-switching processes have been
shown to lead to inconsistent estimators. Campbell (2002) analyzes the case in which the
underlying innovation density is misspeci�ed. Kim, Piger and Startz (2008) discuss the case
in which the endogeneity of regime switching is ignored.
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random variables.

Assumption 1:
(i) The observable random variables

�
Xt 2 Rd

	n
t=1
, d 2 N, are generated as

a sequence of strictly stationary �-mixing random variables such that for some
c > 0 and � 2 [0; 1) the �-mixing coe¢ cient, �� , is at most c�� .
(ii) The sequence of unobserved state variables that indicate regimes, fSt 2 f1; 2ggnt=1,

is generated as a �rst-order Markov process such that P (St = 2jSt�1 = 1) = p�12
and P (St = 1jSt�1 = 2) = p�21 with p�ij 2 [0; 1] (i; j = 1; 2).
(iii) The given fXtg is a Markov regime-switching process. That is, for

some �� := (��0; �
�
1; �

�
2) 2 Rr0+2,

XtjFt�1 �
�
F
�
�jXt�1; ��0; �

�
1

�
if St = 1

F
�
�jXt�1; ��0; �

�
2

�
if St = 2

;

where Ft�1 := �
�
Xt�1; St

�
is the smallest �-algebra generated by

�
Xt�1; St

�
:=�

X 0
t�1; : : : ; X

0
1; St; : : : ; S1

�
; r0 2 N; and the conditional cumulative distribution

function of XtjF , F
�
�jXt�1; ��0; �

�
j

�
has a probability density function f

�
�jXt�1; ��0; �

�
j

�
(j = 1; 2). Further, for (p�12; p

�
21) 2 (0; 1]�(0; 1] n f(1; 1)g, �� is unique in Rr0+2.

The point p�12 = p�21 = 1 is excluded from the parameter space to rule out a
deterministically periodic process for fStg, which would imply that fXtg is not
strictly stationary. Throughout the following discussion, E and P refer to the
distribution of the process described in Assumption 1.
To ensure the likelihood is well de�ned, it is assumed that the data generating

process speci�es an Ft�1-measurable probability density function.
Assumption 2:
(i) A model for f

�
�jXt�1; ��0; �

�
j

�
is
n
f
�
�jXt�1; �j

�
: �j := (�0; �j) 2 ~�

o
,

where ~� := �0 � �� 2 Rr0+1. Further, for each �j 2 ~�, f
�
�jXt�1; �j

�
is

a measurable probability density function with cumulative distribution function
F
�
�jXt�1; �j

�
(j = 1; 2).

The relevant hypotheses, for test of one regime against the alternative of two
regimes, are

H0 : p
�
12 = 0 ; p

�
21 = 0 ; or �

�
1 = �

�
2;

H1 : (p
�
12; p

�
21) 2 (0; 1]� (0; 1] n f(1; 1)g and ��1 6= ��2:

Because the log-likelihood cannot be reduced to a sum of individual log-
likelihoods, if p�12 = 0 (or p

�
21 = 0) then the population variance of the associated

�rst derivative grows geometrically under the null. To avoid this di¢ culty, Cho
and White focus on the quasi-log-likelihood for a mixture model. The quasi-log-
likelihood replaces the (likelihood) Markov conditional density of Xtj�

�
Xt�1�,

which is given by

P
�
St = 1j�

�
Xt�1�� f �XtjXt�1; ��0; �

�
1

�
+P
�
St = 2j�

�
Xt�1�� f �XtjXt�1; ��0; �

�
2

�
;

(1)
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with the mixture conditional density,

(1� ��) f
�
XtjXt�1; ��0; �

�
1

�
+ ��f

�
XtjXt�1; ��0; �

�
2

�
: (2)

The mixture model (2) captures the serial correlation inXt, through f
�
XtjXt�1; �

�
,

but ignores the serial correlation in fStg as the random variable �t := P
�
St = 2j�

�
Xt�1��

is replaced with �� = E
�
P
�
St = 2j�

�
Xt�1��� = p�12= (p

�
12 + p

�
21). Note that

because

�t = (1� p�21)P
�
St�1 = 2j�

�
Xt�1��+ p�12P �St�1 = 1j� �Xt�1�� ;

if p�12 + p
�
21 = 1 then �t = �

� = p�12 and the quasi-log-likelihood is identical to
the log-likelihood.
The resultant quasi-log-likelihood is de�ned for each (�; �) 2 [0; 1]�� with

� := �0 ��� ���, as

L�n (�; �) :=
nX
t=1

lt (�; �) ;

where lt (�; �) := log
�
(1� �) f

�
XtjXt�1; �1

�
+ �f

�
XtjXt�1; �2

��
.

To ensure that expectations are well de�ned, the following regularity condi-
tion is assumed.

Assumption 3:
For all (�; �) 2 [0; 1]��, the quantity E [lt (�; �)] exists and is �nite.

3 QMLE Inconsistency: An Example

The Markov-regime switching autoregressive process analyzed by Cho andWhite
(Section 3, p. 1697) is

Xt = �� � 1fSt=1g � �� � 1fSt=2g + :5Xt�1 + ut;

where ut � i:i:d:N (0; 1) and the transition probabilities satisfy

P (St = 1jSt�1 = 1) = P (St = 2jSt�1 = 2) ;
so that p�12 = p�21. The quasi-log-likelihood employed by Cho and White for
this process is constructed from the mixture model (p. 1697, line 14)

(1� �) �N
�
�1 + �Xt�1; �

2
�
+ �N

�
�2 + �Xt�1; �

2
�
: (3)

To isolate the source of inconsistency in the QMLE from (3), we set the
variance to 1 and let �1 = � and �2��1 = 
. The conditional density functions
that enter (3) are

N (�+ �Xt�1; 1) = f
�
XtjXt�1; �1

�
=

1p
2�
exp

�
�1
2
(Xt � �Xt�1 � �)2

�
N (�+ 
 + �Xt�1; 1) = f

�
XtjXt�1; �2

�
=

1p
2�
exp

�
�1
2
(Xt � �Xt�1 � �� 
)2

�
:
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A necessary condition for consistency is that n�1E [
Pn

t=1 lt (�; �; �; 
)] be
maximized at the population parameter values. Because the process is station-
ary

1

n

nX
t=1

E [lt (�; �; �; 
)] = E [lt (�; �; �; 
)] :=M (�; �; �; 
) :

We then have

M (�; �; �; 
) = E log [�� (Xt; Xt�1) + (1� �)] + E log f
�
XtjXt�1; �1

�
;

where

�
�
Xt; Xt�1; �

1; �2
�
=
f
�
XtjXt�1; �2

�
f
�
XtjXt�1; �1

� = exp �
 (Xt � �Xt�1 � �)� 
2
2

�
:

Thus

M (�; �; �; 
) = E log
�
� exp

�

 (Xt � �Xt�1 � �)�


2

2

�
+ (1� �)

�
�1
2

h
log 2� + E (Xt � �Xt�1 � �)2

i
:

The key is to calculate the �rst derivative ofM (�; �; �; 
) with respect to the
autoregressive coe¢ cient � evaluated at the population values of the parameters
(��; ��; ��; 
�). To begin, let Zt = Xt � ��Xt�1 � ��. The derivative for � is

@

@�
M (�; �; �; 
)

����
(��;��;��;
�)

= E

0@ ���
�Xt�1 exp
h

�Zt � (
�)2

2

i
�� exp

h

�Zt � (
�)2

2

i
+ (1� ��)

1A+E (Xt�1Zt) :
(4)

To calculate these expectations we must account for the correlation between Zt
and Xt�1. The distribution of Zt conditional on Xt�1 depends on this previous
observation through St�1. The conditional density is

f (zjXt�1) = � (z � 
�)P (St = 2jXt�1) + � (z)P (St = 1jXt�1)

=

"
�t exp

"

�Zt �

(
�)
2

2

#
+ (1� �t)

#
� (z)

where � (z) is the density of a standard Gaussian random variable.
The �rst expectation in (4) is

E

0@ ���
�Xt�1 exp
h

�Zt � (
�)2

2

i
�� exp

h

�Zt � (
�)2

2

i
+ (1� ��)

1A
= ���
�E

24Xt�1 Z exp

"

�z � (


�)
2

2

#0@ �t exp
h

�z � (
�)2

2

i
+ (1� �t)

�� exp
h

�z � (
�)2

2

i
+ (1� ��)

1A� (z) dz
35 :
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Because exp
h

�z � (
�)2

2

i
� (z) = � (z � 
�),

Z
exp

"

�z � (


�)
2

2

#0@ �t exp
h

�z � (
�)2

2

i
+ (1� �t)

�� exp
h

�z � (
�)2

2

i
+ (1� ��)

1A� (z) dz
=

Z 0@ �t exp
h

�z � (
�)2

2

i
+ (1� �t)

�� exp
h

�z � (
�)2

2

i
+ (1� ��)

1A� (z � 
�) dz
=

Z 0@ �t exp
h

�v + (
�)2

2

i
+ (1� �t)

�� exp
h

�v + (
�)2

2

i
+ (1� ��)

1A� (v) dv;
and it follows that this integral is

Z 0@ �t exp
h

�v + (
�)2

2

i
+ (1� �t)

�� exp
h

�v + (
�)2

2

i
+ (1� ��)

1A� (v) dv
=

�t
��
+

Z 24�t�� exp
h

�v + (
�)2

2

i
+ (1� �t)�� �

�
�t�

� exp
h

�v + (
�)2

2

i
+ �t (1� ��)

�
��
h
�� exp

h

�v + (
�)2

2

i
+ (1� ��)

i
35� (v) dv

=
�t
��
+
�� � �t
��

Z "
�� exp

"

�v +

(
�)
2

2

#
+ (1� ��)

#�1
� (v) dv:

Therefore, substituting this expression back into the above expectation

@

@�
M (�; �; �; 
)

����
(��;��;��;
�)

= �
�E (Xt�1�t)+
�E [Xt�1 (�t � ��)]C��;
�+E (Xt�1Zt) ;

where C��;
� is the expectation

E

"
�� exp

"

�� +

(
�)
2

2

#
+ (1� ��)

#�1
for � a standard Gaussian random variable. Clearly, C��;
� does not depend
on Xt�1 or St and is a bounded positive quantity: 0 < C��;
� � (1� ��)�1.
Furthermore, we can use that E (ZtjXt�1) = 
�P (St = 2jXt�1) = 
��t to

simplify the expression

@

@�
M (�; �; �; 
)

����
(��;��;��;
�)

= 
�C��;
�E [Xt�1 (�t � ��)] :

The last factor in this expression is

E [Xt�1 (�t � ��)] = E (Xt�1�t)� EXt�1ESt = Cov (Xt�1; St) :
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The last equality follows from E (Xt�1St) = E (Xt�1E (StjXt�1)) and E (StjXt�1) =
�t.
An Expression for the Covariance
To obtain an expression for the covariance of Xt�1 and St, we �rst use the

recursive expression

Xt = �+ �Xt�1+
St + �t =
1X
k=0

�k
�
�+ 
St�k + �t�k

�
;

where �t � i:i:d:N (0; 1). This implies that the covariance is

Cov (Xt�1; St) = 

1X
k=0

�kCov (St�1�k; St) :

The covariance of the binary state variables is

Cov (St�k; St) = P (St = 2jSt�k = 2)� � �2;

where � = P (St = 2) = P (St�k = 2) is the stationary probability in the Markov
chain. It can be shown that the conditional probability is

P (St = 2jSt�k = 2) = � + (1� �)
�
� � p12
�

�k
:

Thus

Cov (St�k; St) = � (1� �)
�
� � p12
�

�k
;

and

Cov (Xt�1; St) = 
� (1� �)
�
� � p12
�

� 1X
k=0

�k
�
� � p12
�

�k
= 
 (1� �) (� � p12)

�
�

� � � (� � p12)

�
:

Therefore, the expression for the partial derivative of the M function with
respect to � becomes

@

@�
M (�; �; �; 
) = 
2C�;
 (� � p12)

�
� (1� �)

� � � (� � p12)

�
:

Therefore, if the Markov regime process includes a dependence between sub-
sequent time points, the gradient along � is not equal to 0 at the population
parameter values and the expected value of the quasi-log-likelihood is maximized
away from the population parameter values.
Of course, this derivative vanishes under the null hypothesis where � = 0,

1 � � = 0 or 
 = 0, as under the null hypothesis there is e¤ectively only
one regime. This derivative also vanishes for � = p12 because, if � = p12
then P (St = j) = P (St = jjSt�1) and the Markov regime process reduces to
independent draws from the stationary distribution. In this case L�n is the
population log-likelihood rather than the quasi-log-likelihood.
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4 QMLE Consistency: A Su¢ cient Condition

To de�ne a class of processes for which a QMLE is consistent, it is helpful to
distinguish the elements of X that correspond to endogenous variables. Let a
partition of X be given by X = (Y 0;W 0)

0, where Y denotes the sub-vector of
endogenous variables andW denotes the sub-vector of exogenous variables. Let
Xt�1 :=

�
Y t�1;W t

�
=
�
Y 0t�1; : : : ; Y

0
1 ;W

0
t ; : : : ;W

0
1

�
. Exogeneity implies that

P
�
St = 2j�

�
Xt�1�� is independent of W t. To obtain a su¢ cient condition we

augment Assumption 2 to remove the correlation between the conditional state
probabilities, P

�
St = 2j�

�
Xt�1��, and the regressors that enter the conditional

densities.
Let

�
�
Yt; X

t�1; �1�; �2
�
=
f
�
YtjY t�1;W t; �2

�
f
�
YtjY t�1;W t; �1�

� :
Assumption 2:
(ii) The ratio �

�
Yt; X

t�1; �1�; �2
�
is a random variable that is independent

of Y t�1 for every value of �2.

Assumption 2(ii) is parallel to the assumption used to de�ne a state-space model
in the statistical literature.2 Because Assumption 2(ii) implies that the state-
speci�c conditional density of Yt is independent of Ys for s < t, exogeneity
of Wt implies that f

�
YtjXt�1;Wt; �

i
�
= f

�
YtjWt; �

i
�
. While the assumption

does not include the autoregressive model analyzed by Cho and White, it does
include the second model they analyze, namely a simultaneous equations model
of the type in Gri¤en et al. (2009).
We begin with the classic structure adapted by Levine (1983) to establish

that the expected quasi-log-likelihood attain a global maximum at the popu-
lation parameter values. We employ the structure to prove that, under the
su¢ cient condition Assumption 2(ii), the unconditional population mean of the
quasi-log-likelihood attains a global maximum at (��; ��). The object of analy-
sis is E [lt (�; �)� lt (��; ��)], where E denotes expectation with respect to the
Markov conditional density (1).

Theorem 1:
Under Assumptions 1, 2(i)-(ii) and 3,

E [lt (�; �)� lt (��; ��)] � 0.

Proof:
We have

E [lt (�; �)� lt (��; ��)] = E

"
log

 
��
�
Yt; X

t�1; �1�; �2
�
+ (1� �)�

�
Yt; X

t�1; �1�; �1
�

���
�
Yt; Xt�1; �1�; �2�

�
+ (1� ��)

!#

� logE

" 
��
�
Yt; X

t�1; �1�; �2
�
+ (1� �)�

�
Yt; X

t�1; �1�; �1
�

���
�
Yt; Xt�1; �1�; �2�

�
+ (1� ��)

!#
;

2See, for example, Durbin and Koopman (2001).
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where the last line follows by Jensen�s inequality.
The expected value of the ratio is

E

"
��
�
Yt; X

t�1; �1�; �2
�
+ (1� �)�

�
Yt; X

t�1; �1�; �1
�

���
�
Yt; Xt�1; �1�; �2�

�
+ (1� ��)

#

= E

(
E

" 
��
�
Yt; X

t�1; �1�; �2
�
+ (1� �)�

�
Yt; X

t�1; �1�; �1
�

���
�
Yt; Xt�1; �1�; �2�

�
+ (1� ��)

!������ �Xt�1�#)

= Ef
R ���(y;Xt�1;�1�;�2)+(1��)�(y;Xt�1;�1�;�1)

���(y;Xt�1;�1�;�2�)+(1���)

�
�
�
�t�

�
y;Xt�1; �1�; �2�

�
+ (1� �t)

�
f
�
yjXt�1; ��1

�
dyg

= E
�Z �

��
�
y;Xt�1; �1�; �2

�
+ (1� �)�

�
y;Xt�1; �1�; �1

��
f
�
yjXt�1; ��1

�
dy

�

+E
�
�t
R ���(y;Xt�1;�1�;�2)+(1��)�(y;Xt�1;�1�;�1)

���(y;Xt�1;�1�;�2�)+(1���)

��
�
�
y;Xt�1; �1�; �2�

�
� 1
�
f
�
yjXt�1; ��1

�
dy

�
;

where �t = �t � �� is Y t�1-measurable and so can be moved outside the condi-
tional expectation. The �rst expectation is 1 because this is the expectation of
a density. For the second term, let

g
�
�
�
Xt�1�� =  �� �y;Xt�1; �1�; �2

�
+ (1� �)�

�
y;Xt�1; �1�; �1

�
���

�
y;Xt�1; �1�; �2�

�
+ (1� ��)

!�
�
�
y;Xt�1; �1�; �2�

�
� 1
�
:

Under Assumption 2(ii), g
�
�
�
Xt�1�� is independent of Y t�1, so the second

term becomes E [�t � g (� (W t))]. Because �t is independent ofW t, which follows
from the exogeneity of W t, the second term is

E
�
�t � g

�
�
�
Xt�1��� = EY t�1 [�t]EW t

�
g
�
�
�
W t
���
:

The quantity �t has expectation zero because EY t�1 [�t] = E [�t] and stationarity
implies E�t = ��. Therefore

E [lt (�; �)� lt (��; ��)] � log (1) = 0:

�
Given Theorem 1, establishing that the QMLE for the mixture model,

�
�̂n; �̂n

�
,

is consistent follows from standard application of a uniform law of large numbers
as referenced in Cho and White (Proof of Theorem 1(b) p. 1704).
At this point, it is natural to ask how the su¢ cient condition for consis-

tency of a QMLE that we introduce, Assumption 2(ii), relates to the condition
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that Cho and White refer to in their proof of Theorem 1(b) on consistency of
a QMLE. To answer, we use the autoregressive process analyzed in Cho and
White and presented in (3). Assumption 2(ii), which restricts the class of
processes allowed by Assumptions 1 and 2(i), explicitly rules out dependence
of the state-speci�c conditional densities on past values of the endogenous vari-
ables, and so rules out autoregressive processes. Cho and White consider all
processes allowed under Assumptions 1 and 2(i). Given that the autoregressive
process that enters (3) is a leading example from their paper, it is perhaps not
surprising that this process appears to be allowed under Assumptions 1 and
2(i). To see this, note that under Assumption 1 the density of Xt given the
entire past of X and the current and past values of the state variable is

XtjFt�1 = 1fSt=1gf
�
XtjXt�1; �1�

�
+ 1fSt=2gf

�
XtjXt�1; �2�

�
: (5)

The density of Xt given only the entire past of X, which enters the likelihood, is
obtained by replacing 1fSt=ig with P

�
St = ijXt�1�, so that the mixture model

in (3) follows from (5) by replacing 1fSt=1g with 1 � � and 1fSt=2g with �.
In consequence f

�
XtjXt�1; �1�

�
= N

�
�1 + �Xt�1; �

2
�
and f

�
XtjXt�1; �2�

�
=

N
�
�2 + �Xt�1; �

2
�
.

If the autoregressive process that enters (3) is allowed under Assumptions 1
and 2(i), how can the proof of Theorem 1(b) in Cho and White be reconciled
with the result in Section 3? It appears that a key step in the proof of Theorem
1(b) requires that, given St = 2, the marginal density of Xt equals the density
of Xt conditional on Xt�1. In detail, the marginal density of Xt given St = 2
is
R
f (x1; : : : xtjSt = 2) dxt�1. As Cho and White note (p. 1704, line 8 from

the bottom of the page)

f (x1; : : : xtjSt = 2) =
1

��
��0F1 (�

�)
�
�t�1�=2P

�F� (�
�)
�
P�Ft (�

�) [1 0]
0
;

which implies that the marginal density of Xt given St = 2 isZ
f (x1; : : : xtjSt = 2) dxt�1 =

1

��

Z �
��0F1 (�

�)
�
�t�1�=2P

�F� (�
�)
�
P�Ft (�

�) [1 0]
0	
dxt�1:

Because F� is a function of x��1, the expression on the right side is

1

��

Z �
��0F1 (�

�)
�
�t�1�=2P

�F� (�
�)
�
P�Ft (�

�) [1 0]
0	
dxt�1

=
1

��

Z
��0F1 (�

�)

Z
P�F2 (�

�) � � �
Z
P�Ft�1 (�

�)P�Ft (�
�) dx1dx2 � � � dxt�1 [1 0]0 :

If F� is not a function of x��1, then

1

��

Z
��0F1 (�

�)

Z
P�F2 (�

�) � � �
Z
P�Ft�1 (�

�)P�Ft (�
�) dx1dx2 � � � dxt�1 [1 0]0

=
1

��

Z
��0F1 (�

�) dx1

Z
P�F2 (�

�) dx2 � � �
Z
P�Ft�1 (�

�) dxt�1P
�Ft (�

�) [1 0]
0
:
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In their proof of Theorem 1(b), Cho and White state (p. 1704, line 5 from the
bottom)Z

f (x1; : : : xtjSt = 2) dxt�1

=
1

��

Z
��0F1 (�

�) dx1

Z
P�F2 (�

�) dx2 � � �
Z
P�Ft�1 (�

�) dxt�1P
�Ft (�

�) [1 0]
0
;

which holds only if, given St = 2, the distribution of Xt does not depend on Xs
for s < t. Because Assumptions 1 and 2(i) do not imply that, given the value
of St, the distribution of Xt not depend on Xs for s < t, proof of Theorem 1(b)
requires an additional condition of the form of Assumption 2(ii).

5 Remarks

The inconsistency of a QMLE for Markov regime-switching processes with au-
toregressive components extends to processes with moving-average components.
Inconsistency of a QMLE, however, does not imply that a test based on the
quasi-likelihood ratio is inconsistent. Consistency of a QLR test requires only
that E lt (�; �) be maximized at some point outside the null hypothesis space.
For the autoregressive process in Section 3, the gradient of the M function is
zero in every coordinate except �, which indicates that M is maximized away
from the null hypothesis and that the class of models for which the QLR test is
consistent is larger than the class of models for which the QMLE is consistent.
A de�nitive treatment of consistency could be based on bounding the value of
the likelihood under the null hypothesis and then demonstrating that under the
alternative there is always a point in the alternative space for which the value
of the likelihood exceeds the bound. Even for a consistent test, the power may
be a¤ected by the consistency properties of the QMLE under the alternative.
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